Тепловой насос для отопления дома своими руками

Как работают тепловые насосы для отопления

Чем тепловой насос отличается от других установок для отопления частных домов:

  • в отличие от котлов и обогревателей, агрегат самостоятельно не производит тепло, а подобно кондиционеру перемещает его внутрь здания;
  • ТН получил название насоса, поскольку «выкачивает» энергию из источников низкопотенциального тепла – окружающего воздуха, воды либо грунта;
  • установка питается исключительно электроэнергией, потребляемой компрессором, вентиляторами, циркуляционными насосами и платой управления;
  • работа аппарата основана на цикле Карно, используемом во всех холодильных машинах, например, кондиционерах и сплит-системах.
Принцип действия бытовой сплит-системы
В режиме обогрева традиционная сплит-система нормально работает при температуре выше минус 5 градусов, на сильном морозе эффективность резко падает

В теплообменном цикле Карно участвует рабочее тело – газ фреон, кипящий при минусовой температуре. Поочередно испаряясь и конденсируясь в двух теплообменниках, хладагент поглощает энергию окружающей среды и переносит внутрь здания. В целом принцип действия теплового насоса повторяет работу кондиционера, включенного на обогрев:

  1. Находясь в жидкой фазе, фреон двигается по трубкам наружного теплообменника-испарителя, как изображено на схеме. Получая тепло воздуха или воды сквозь металлические стенки, хладагент нагревается, кипит и испаряется.
  2. Дальше газ поступает в компрессор, нагнетающий давление до расчетного значения. Его задача – поднять точку кипения вещества, чтобы фреон сконденсировался при более высокой температуре.
  3. Проходя через внутренний теплообменник–конденсор, газ снова обращается в жидкость и отдает накопленную энергию теплоносителю (воде) или воздуху помещения напрямую.
  4. На последнем этапе жидкий хладон поступает внутрь ресивера–влагоотделителя, затем в дросселирующее устройство. Давление вещества снова падает, фреон готов пройти повторный цикл.
Как работает тепловой насос
Схема работы теплового насоса похожа на принцип действия сплит-системы

В бытовых кондиционерах и ТН применяются различные типы терморегулирующей арматуры, снижающей давление хладагента перед испарителем. В бытовых сплит-системах роль регулятора играет простое капиллярное устройство, в насосах ставится дорогой терморегулирующий вентиль (ТРВ).

Заметьте, вышеописанный цикл происходит в тепловых насосах всех типов. Разница состоит в способах подвода/отбора тепла, которые мы перечислим далее.

Дроссельные устройства кондиционера
Виды дроссельной арматуры: капиллярная трубка (фото слева) и терморегулирующий вентиль (ТРВ)

Тепловой насос воздух-вода для бассейна состоит из:

  • Змеевика, который наполнен охлаждающим газом.
  • Пластиковая емкость для испарения влаги.
  • Конденсатор.
  • Компрессор от нового или старого сплита.

В пластиковом испарителе, фреон становится газообразным, забирая тепло из окружающей среды. Газ поступает в компрессор, где благодаря давлению фреон нагревается и поступает в конденсатор. Здесь газ принимает жидкое состояние, идущее на тепло. Благоприятная температура в зимний период, обогрев тепловым насоса бассейна зимой от -10 до -20 градусов.

Грунт, воздух и вода – эти среды являются естественными аккумуляторами энергии. Их температура невысока, но относительно стабильна, что позволяет извлекать тепло на нужды отопления. Задача теплового насоса «собрать» энергию из окружающей среды, усилить её (точнее – сконцентрировать) и передать основному рабочему теплоносителю.

Использование накопительных ёмкостей существенно повышает стабильность и энергоэффективность системы

Эти системы во многом схожи с обычными холодильными установками. Возьмём для примера геотермальный насос с водяной разводкой внутри дома. В скважине или коллекторе первичный теплоноситель (рассол) с помощью насосов циркулирует по замкнутому контуру, где получает дополнительные 3-5 градусов. В первичном теплообменнике это приобретённое низкотемпературное тепло передаётся хладагенту (фреону), который закипает и переходит в газообразное состояние.

Основу насоса типа «грунт – вода» составляет компрессор и два теплообменника. Первичный теплоноситель практически полностью отдаёт энергию

Отметим, что такое тепло не получается бесплатным. Тепловой насос для отопления нуждается в электрической энергии (прежде всего, для обеспечения работы компрессора и нагнетающего насоса или вентилятора), но потребление будет в разы меньше, чем если бы использовался электрокотёл. Коэффициент преобразования у тепловых насосов довольно высокий: от 3 до 5.

Это значит, что, оплачивая один электрический кВт/час, мы получим до 5 кВт тепла, а этого достаточно, чтобы обогреть дом в 50 м2 со стандартным уровнем теплопотерь. Ещё лучших показателей энергоэффективности удаётся добиться, если использовать в системе аккумулирующие ёмкости тепла и удешевить электроэнергию, допустим, установив многотарифный счётчик.

Важно, что отопление дома тепловым насосом может дополняться функцией нагрева воды (используются накопительные бойлеры). Летом движение теплоносителей может производиться в реверсном режиме, то есть система будет работать на охлаждение помещений.

Современное оборудование может обеспечить полноценное отопление коттеджа любой площади, существуют промышленные установки на 200 и более киловатт тепловой мощности.

В зависимости от конструктивного исполнения, тепловые насосы обладают неодинаковой производительностью и экономичностью. Существенно отличаются как затраты на создание системы, так и эксплуатационные показатели.

Промышленные тепловые насосы могут использовать энергию тёплых стоков

Как мы уже говорили, источником энергии для теплового насоса может быть: воздух, вода, грунт. В помещениях тепло распределяется либо с использованием воды/антифриза, либо устройствами воздушного отопления. Поэтому принято выделять 6 видов систем: «грунт – вода», «грунт – воздух», «вода – вода» и так далее.

Насосы, собирающие тепло из земли, являются наиболее эффективными и практичными. В грунтах температура всегда стабильна и почти не зависит от внешних факторов. Тепло здесь есть всегда, и его можно извлечь даже в условиях вечной мерзлоты. Другое дело, что придётся разрабатывать большие глубины. Получение тепловой энергии производится двумя разными способами:

  • зондами в вертикальных скважинах,
  • горизонтальными коллекторами.
Предлагаем ознакомиться  Когда собирать березовый веник для бани

Вертикальная компоновка незаменима, если имеется участок небольшого размера, кроме того, такие системы самые производительные. В данном случае бурят несколько скважин глубиной от 50 до 200 метров и помещают в них соединённые друг с другом полимерные трубы – зонды. Внутри зонда как раз и циркулирует рассол. Единственный недостаток грунтовых насосов заключается в дороговизне работ по бурению и обустройству скважин.

Коллекторы тоже собираются из пластиковых труб. Их укладывают горизонтально на небольшой глубине (примерно 1,2-1,5 метра). В зависимости от конфигурации участка и геологических условий применяют схемы расположения типа: змейка, спираль, петли. Ориентировочная протяжённость этого контура исчисляется по формуле – порядка 5 метров погонных на каждый квадрат площади дома.

Использование горизонтального контура примерно на 20 процентов менее эффективно, чем вариант с зондами, однако его неоспоримый плюс – это малая стоимость земляных работ.

Вода тоже отдаёт тепло, но только если зимой она не замерзает – подойдёт река или озеро с глубиной от 3 метров. Иногда используются грунтовые воды обычных скважин, в городах и в промышленных зонах – канализация и производственные стоки. Есть два варианта работы таких систем:

  • забортная вода может прокачиваться через теплообменник вместо рассола;
  • герметичный контур с рассолом лежит в воде и отбирает тепло (конструкция похожа на горизонтальный коллектор, который грузами притоплен на дне или заглублён в дно).

Перед погружением трубы с заданным шагом закрепляются на монтажной сетке

Конструкции «воздух – воздух» и «воздух – вода» работают по принципу бытового кондиционера с функцией обогрева. Кстати, они предлагаются в конфигурации моноблока или сплит-системы. Теплообменник тут представляет собой крупный радиатор с множеством рёбер, для прокачки воздуха имеется мощный вентилятор. Интересно, что источником энергии могут выступать дымовые газы или воздушные массы системы вентиляции.

Представление о тепловом насосе

Тепловой насос, как холодильное оборудование. Только холодильник забирая энергию из вне охлаждает ее. А данный агрегат забирает у природы тепло, преобразовывает его и отдает конкретно отапливаемому дому или воде из бассейна, нагревая ее. К источникам относятся:

  • Окружающий воздух, а летом это особенно актуально и такой насос будет работать более эффективно.
  • Вода.
  • Почва.

Тепловой насос для бассейна внешне похож на кондиционер. Только работает он по обратному принципу. Не охлаждает воздух, а нагревает его. Очень удобен для людей, у кого нет возможности провести газовое оборудование. И потребляет мало электроэнергии. Некоторые модели очень эстетично выглядят, не занимают много место и оборудованы цифровым экраном и пультом.

Делаем геотермальную установку

Согласно общепринятой классификации, ТН делятся на типы по источнику получаемой энергии и виду теплоносителя, которому она передается:

  1. Насосы типа «воздух-воздух» наиболее близки к традиционным сплит-системам, разница состоит в площади наружного испарителя. Аппарат отнимает теплоту окружающей среды и напрямую передает воздуху помещения, как происходит в обычном кондиционере.
  2. Конструкция генераторов «воздух–вода» идентична, но предусматривает нагрев воды либо антифриза, циркулирующего по системе отопления жилого дома.Отопитель типа воздух-вода
  3. Установка типа «вода-вода» берет низкопотенциальное тепло водоема и передает жидкому теплоносителю. Здесь применяется дополнительный внешний теплообменник из труб, погруженный в колодец, озеро, скважину или канализационный септик. Циркуляцию воды через испаритель обеспечивает второй насос.
  4. Геотермальный ТН использует теплоту грунта и нагревает внутридомовой теплоноситель. Внешний теплообменный контур представляет собой змеевик с антифризом, заглубленный на 1.5—2 м и занимающий большую площадь. Второй вариант – несколько вертикальных зондов из труб, опущенных внутрь скважин на глубину 10—100 метров.

Основной параметр, характеризующий тепловой насос для отопления дома, – коэффициент эффективности COP, равный отношению между полученной и затраченной энергией. Например, относительно недорогие воздушные отопители не могут похвастать высоким COP – 2.5…3.5. Поясняем: затратив 1 кВт электричества, установка подает в жилище 2.5—3.5 кВт теплоты.

Схемы отбора тепла водной среды
Способы отбора тепла водных источников: из пруда (слева) и через скважины (справа)

Водяные и грунтовые системы эффективнее, их реальный коэффициент лежит в диапазоне 3…4.5. Производительность – величина переменная, зависящая от многих факторов: конструкции теплообменного контура, глубины погружения, температуры и протока воды.

Если предыдущий вариант позволит добиться примерно двойной экономии, то даже самодельный земляной контур даст COP в районе 3 (три киловатта тепла на 1 кВт израсходованного электричества). Правда, финансовые и трудовые затраты тоже существенно увеличатся.

Хотя в интернете опубликована масса примеров сборки подобных аппаратов, универсальной инструкции с чертежами не существует. Мы предложим рабочий вариант, собранный и проверенный реальным домашним мастером, хотя многие вещи придется додумывать и доделывать самостоятельно – всю информацию о тепловых насосах сложно поместить в одной публикации.

Следуя собственным рекомендациям, приступаем к расчетам геотермального насоса с вертикальными U-образными зондами, помещенными в скважины. Необходимо узнать общую протяженность внешнего контура, а потом – глубину и количество вертикальных шахт.

Исходные данные для примера: нужно обогреть частный утепленный дом площадью 80 м² и высотой потолков 2.8 м, расположенный в средней полосе. Расчет нагрузки на отопление производить не станем, определим потребность в тепле по площади с учетом теплоизоляции – 7 кВт.

Способы раскладки трубы внешнего контура ТН
По желанию можно обустроить горизонтальный коллектор, но тогда придется выделить большую площадь под земляные работы

Интенсивность теплообмена между землей и незамерзающей жидкостью, циркулирующей по контуру, зависит от типа грунтов:

  • 1 погонный метр вертикального зонда, погруженного в подземные воды, получит около 80 Вт теплоты;
  • в каменистых грунтах теплосъем составит порядка 70 Вт/м;
  • глинистые почвы, насыщенные влагой, отдадут примерно 50 Вт на 1 м коллектора;
  • сухие породы – 20 Вт/м.
Предлагаем ознакомиться  Как сделать душ в бане своими руками

Пример вычисления длины трубы. Чтобы извлечь из сырой глинистой породы необходимые 7 кВт тепловой энергии, понадобится 7000 Вт поделить на показатель 50 Вт/м, получаем общую глубину зонда 140 м. Теперь трубопровод распределяется по скважинам глубиной 20 м, которые вы сможете пробурить своими руками.

Тепловой насос для отопления дома своими руками

Следующий этап – расчет площади теплообмена испарителя и конденсора. На различных интернет-ресурсах и форумах предлагаются некие расчетные формулы, в большинстве случаев – некорректные. Мы не возьмем на себя смелость рекомендовать подобные методики и вводить вас в заблуждение, но предложим некий хитрый вариант:

  1. Обратитесь к любому известному производителю пластинчатых теплообменников, например, Alfa Laval, Kaori, «Анвитэк» и так далее. Можно выйти на официальный сайт бренда.
  2. Заполните форму подбора теплообменника либо созвонитесь с менеджером и закажите подбор агрегата, перечислив параметры сред (антифриз, фреон) – температуру на входе и выходе, тепловую нагрузку.
  3. Специалист фирмы произведет необходимые расчеты и предложит подходящую модель теплообменника. Среди его характеристик вы найдете главную – площадь поверхности обмена.

Пластинчатые агрегаты очень эффективны, но дороги (200—500 евро). Дешевле собрать кожухотрубный теплообменник из медной трубки наружным диаметром 9.5 или 12.7 мм. Выданную производителем цифру умножьте на коэффициент запаса 1.1 и поделите на длину окружности трубы, получите метраж.

Устройство пластинчатого теплообменника
Пластинчатый теплообменник из нержавейки – идеальный вариант испарителя, он эффективен и занимает мало места. Проблема в высокой цене изделия

Пример. Площадь теплового обмена предложенного агрегата составила 0.9 м². Выбрав медную трубку ½” диаметром 12.7 мм, вычисляем длину окружности в метрах: 12.7 х 3.14 / 1000 ≈ 0.04 м. Определяем общий метраж: 0.9 х 1.1 / 0.04 ≈ 25 м.

Будущий тепловой насос предлагается строить на базе наружного блока сплит-системы подходящей мощности (указана на табличке). Почему лучше использовать б/у кондиционер:

  • аппарат уже оснащен всеми комплектующими – компрессором, дросселем, ресивером и пусковой электрикой;
  • самодельные теплообменники можно поместить в корпус холодильной машины;
  • есть удобные сервисные порты для заправки фреона.

Собирать ТН на базе старого холодильника нецелесообразно – мощность агрегата слишком мала. В лучшем случае удастся «выжать» до 1 кВт теплоты, чего хватит на обогрев одной небольшой комнаты.

Помимо внешнего блока «сплита» понадобятся следующие материалы:

  • труба ПНД Ø20 мм – на земляной контур;
  • полиэтиленовые фитинги для сборки коллекторов и подключения к теплообменникам;
  • циркуляционные насосы – 2 шт.;
  • манометры, термометры;
  • качественный водопроводный шланг либо труба ПНД диаметром 25—32 мм на оболочку испарителя и конденсатора;
  • трубка медная Ø9.5—12.7 мм с толщиной стенки не менее 1 мм;
  • утеплитель для трубопроводов и фреоновых магистралей;
  • комплект для герметизации греющих кабелей, укладываемых внутри водопровода (понадобится для уплотнения концов медных трубок).
Приспособление для ввода греющего кабеля в трубу
Комплект втулок для герметичного ввода медной трубки

В качестве внешнего теплоносителя применяется солевой раствор воды либо антифриз для отопления – этиленгликоль. Также понадобится запас фреона, чья марка указана на шильдике сплит-системы.

Перед началом монтажных работ наружный модуль надо разобрать – снять все крышки, удалить вентилятор и большой штатный радиатор. Отключите электромагнит, управляющий реверсивным клапаном, если не планируете использовать насос в качестве охладителя. Датчики температуры и давления необходимо сохранить.

Порядок сборки основного блока ТН:

  1. Изготовьте конденсор и испаритель, просунув медную трубку внутрь шланга расчетной длины. На концах установите тройники для присоединения грунтового и отопительного контура, выступающие медные трубки уплотните с помощью специального комплекта для греющего кабеля.
  2. Используя в качестве сердечника отрезок пластиковой трубы Ø150—250 мм, намотайте самодельные двухтрубные контуры и выведите концы в нужные стороны, как это делается ниже на видео.
  3. Разместите и закрепите оба кожухотрубных теплообменника на месте штатного радиатора, медные трубки подпаяйте к соответствующим выводам. «Горячий» теплообменник–конденсатор лучше подключить к сервисным портам.Компоновка элементов геотермальной установки
  4. Установите заводские датчики, измеряющие температуру хладагента. Утеплите голые участки трубок и сами теплообменные устройства.
  5. На водяных магистралях поставьте термометры и манометры.

На тематических форумах встречается другой способ изготовления испарителя – трубка из меди навивается спиралью, затем вставляется внутрь закрытой емкости (бака или бочки). Вариант вполне разумен при большом количестве витков, когда рассчитанный теплообменник попросту не помещается в корпусе кондиционера.

На данном этапе выполняются несложные, но трудоемкие земляные работы и раскладка зондов по скважинам. Последние можно проделать вручную либо пригласить буровую машину. Расстояние между соседними скважинами – не менее 5 м. Дальнейший порядок работ:

  1. Прокопайте между сверлениями неглубокую траншею для укладки подводящих трубопроводов.
  2. В каждое отверстие опустите по 2 петли из полиэтиленовых труб и залейте ямы бетоном.
  3. Сведите магистрали к точке соединения и смонтируйте общий коллектор, используя фитинги ПНД.
  4. Проложенные в земле трубопроводы утеплите и засыпьте грунтом.
Монтаж внешнего контура ТН
Слева на фото – опускание зонда в обсадную пластиковую трубу, справа – прокладка подводок в траншее

Самодельный тепловой насос

  • На место, где будет установлен компрессор, крепятся держатели под него.
  • Металлические полые трубки обматываются вокруг цилиндра. Создается змеевик, витки должны быть одинаковыми.
  • Понадобится металлическая емкость из двух одинаковых половинок. В одну часть укладывается змеевик. Части спаиваются. В емкости делаются резьбовые отверстия для выходных трубок змеевика.
  • Устанавливают пластиковую бочку, которая будет испарителем. В бочку заводят трубы внутреннего контура.
  • Для вывода воды в бассейн используются пластиковые трубы.
  • Соединяются все элементы в одну систему.
  • Специалист заполняет конструкцию фреоном.

Какой ТН лучше собирать

Формулируем задачу: нужно построить самодельный тепловой насос с наименьшими затратами. Отсюда вытекает ряд логичных выводов:

  1. В установке придется использовать минимум дорогостоящих деталей, поэтому достичь высокого значения COP не удастся. По коэффициенту производительности наш аппарат проиграет заводским моделям.
  2. Соответственно, делать чисто воздушный ТН бессмысленно, проще пользоваться инверторным кондиционером в режиме обогрева.
  3. Чтобы получить реальную выгоду, нужно изготавливать тепловой насос «воздух – вода», «вода-вода» либо строить геотермальную установку. В первом случае можно добиться COP около 2—2.2, в остальных – достичь показателя 3—3.5.
  4. Без контуров напольного отопления обойтись не удастся. Теплоноситель, нагретый до 30—35 градусов, несовместим с радиаторной сетью, разве только в южных регионах.
Предлагаем ознакомиться  Грамотный подход при посадке помидоров в теплицу
Прокладка труб до озера
Прокладка внешнего контура ТН к водоему

Для реализации водяной версии ТН необходимы определенные условия (на выбор):

  • водоем за 25—50 м от жилища, на большем расстоянии потребление электричества сильно вырастет за счет мощного циркуляционного насоса;
  • колодец либо скважина с достаточным запасом (дебетом) воды и место для слива (шурф, вторая скважина, сточная канава, канализация);
  • сборный канализационный коллектор (если вам позволят туда врезаться).

Расход грунтовых вод рассчитать нетрудно. В процессе отбора теплоты самодельный ТН понизит их температуру на 4—5 °С, отсюда через теплоемкость воды определяется объем протока. Для получения 1 кВт тепла (дельту температур воды принимаем 5 градусов) нужно прогнать через ТН около 170 литров в течение часа.

На отопление дома площадью 100 м² потребуется мощность 10 кВт и расход воды 1.7 тонны в час — объем впечатляющий. Подобный тепловой водяной насос сгодится для небольшого дачного домика 30—40 м², желательно – утепленного.

Способы прокладки труб теплового насоса
Способы отбора теплоты геотермальным ТН

Сборка геотермальной системы более реальна, хотя процесс довольно трудоемкий. Вариант горизонтальной раскладки трубы по площади на глубине 1.5 м отметаем сразу – вам придется перелопатить весь участок либо платить деньги за услуги землеройной техники. Способ пробивки скважин реализовать гораздо проще и дешевле, практически без нарушения ландшафта.

1. Воздух. При нормальном давлении все типы фреонов закипают при отрицательных температурах (например, R22 — около -25 °C, R404 и R502 — около -30 °C). Но для циркуляции в системе надо создать избыточное давление уже на первой фазе — испарении. Те же 4 атмосферы в испарителе требуют, чтобы температура воздуха на улице была не ниже 0 °C для R22 и -5 °C для R404 и R502. В наших регионах этот тип теплового насоса можно использовать для отопления в межсезонье и для горячего водоснабжения в теплое время года.

2. Вода. Это более стабильный источник тепла, при условии, что водоем зимой не промерзает до дна. Но дом должен не просто находиться рядом с озером или рекой, а быть на первой линии.

Тепловой насос для отопления дома своими руками

3. Земля. Самый стабильный источник тепловой энергии. Можно использовать две схемы — горизонтальную и вертикальную. Горизонтальная кажется проще тем, что не требует бурения. Но придется проделать большой объем земляных работ по рытью системы траншей на глубину ниже уровня промерзания грунта (для средних широт он колеблется от 1 метра на западе европейской части страны и до 1,6–1,8 ближе к Уралу, в Сибири ситуация «еще хуже».

Простейший тепловой насос из оконного кондиционера

Как нетрудно догадаться, для изготовления ТН «вода – воздух» потребуется оконный охладитель в рабочем состоянии. Очень желательно купить модель, оборудованную реверсивным клапаном и способную работать на обогрев, иначе придется переделывать фреоновый контур.

Холодильная мощность оконного кондиционера
Отопительная мощность аппарата больше холодильной и равна сумме двух параметров — производительность плюс тепло, выделяемое компрессором

При некоторой доле везения вам даже не придется выпускать фреон и перепаивать трубки. Как переделать кондиционер в тепловой насос:

  1. Снимите верхний кожух агрегата и открутите внешний теплообменник от поддона. Аккуратно отодвиньте радиатор, стараясь не перегибать трубки с хладагентом.
  2. Снимите наружную крыльчатку с общего вала.
  3. Изготовьте металлический бак по длине внешнего теплообменника, ширину сделайте на 10—15 см больше. В боковые стенки врежьте штуцеры подачи проточной воды.
  4. Чтобы радиатор не обмерзал, увеличьте площадь обмена, добавив по бокам пластины из меди либо алюминия (в зависимости от материала теплообменника).
  5. Погрузите радиатор в бак, желательно без разрезания фреоновых трубок. Сделайте герметичную крышку и уплотните вводы контура.
  6. Подсоедините к штуцерам шланги подачи и отбора воды, подключите циркуляционные насосы. Наполните и проверьте бак на герметичность.

Плюсы теплового насоса

  • Экологически безопасен, так как не выбрасывает в окружающую среду вредные вещества.
  • Не взрывоопасен.
  • Не требует проведения дополнительных коммуникаций. Работает от электросети.
  • Заменяет отопительные приборы зимой, охладительные приборы летом и происходит подогрев бассейна тепловым насосом.
  • Несмотря на повышенную производительность уровень шума достаточно низкий.

Заключение

Обогрев бассейна зимой тепловым насосом очень удобный способ. На нем выставляется нужная температура, и время включения и время для нагрева. Вы точно будете знать что вода не перегревается или не остынет. Это полностью автоматизированная система, которая не только может подогреть воду в бассейне, но и зимой обогревает дом (для обогрева большого дома лучше своими руками собрать геотермальный насос).

  • Убирать скопившийся мусор на решетке и протирать ее от пыли.
  • Смазывать детали.
  • Менять отработанное масло.
  • Просматривать трубки на герметичность.
  • Следить за датчиком тепла.

Сделать и запустить тепловой геотермальный насос своими руками весьма непросто. Наверняка потребуются неоднократные доработки, исправления ошибок, настройки. Как правило, большинство неполадок в самодельных ТН возникает из-за неправильной сборки либо заправки основного теплообменного контура. Если агрегат сразу отказал (сработала автоматика безопасности) либо не греет теплоноситель, стоит вызвать мастера по холодильному оборудованию – он проведет диагностику и укажет на допущенные ошибки.

Оцените статью
Поселок Петровский
Adblock detector